ANNUAL WATER QUALITY REPORT

WATER TESTING PERFORMED IN 2016

Presented By Harris Co. WCID #1

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (281) 426-2115.

PWS ID#: 1010159

We've Come a Long Way

Once again we are proud to present our annual Water quality report covering the period between January 1 and December 31, 2016. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day—at any hour—to deliver the highest-quality drinking water without interruption. Although the challenges ahead are many, we feel that by relentlessly investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family.

Water Stats

In the Water Use Survey submitted to the Texas Water Development Board for the time period of Jan-Dec 2016, our system took in an estimated 232.6 million gallons of water. We sold an estimated 197.4 million gallons of water to our customers. As reported in our Water Loss Audit, also submitted to the Texas Water Development Board, our system lost an estimated 35.2 million gallons of water in 2016, 36.2 million less than last year. If you have any questions about the water loss, please call Mark Taylor, General Manager, Harris County WCID #1, at (281) 426-2115.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on the taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet on Tuesday following the second Monday of each month, beginning at 6 p.m., at the Water Office, 125 San Jacinto, Highlands, Texas.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Where Do We Get Our Drinking Water?

The source of drinking water for Harris County WCID #1 is purchased surface water blended with 20 percent groundwater from the Chicot Aquifer. Our main well site is located on E. Houston Street in Highlands, Texas. Purchased water comes from the Trinity River and is processed by Baytown Area Water Authority on Thompson Road.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://www.tceq.texas.gov/gis/swaview.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources.

Further details about sources and source water assessments are available on Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/.

Our Water System ID # is TX1010159. Baytown Area Water Authority Water System ID # is TX1011742.

The TCEQ completed an assessment of your source water, and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system, contact Mark Taylor at (281) 426-2115.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not, themselves, pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at such times. If you do use

the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Mark Taylor, Harris County WCID #1 General Manager, at (281) 426-2115.

Test Results

Our water is monitored for many different kinds of contaminants on a very strict sampling schedule. The information below represents only those substances that were detected; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 3rd stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the U.S. EPA needs to introduce new regulatory standards to improve drinking water quality. Contact us for more information on this program.

REGULATED SUBSTANCES

				Harris Coun	ty WCID #1	Baytown Aut	Area Water hority		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Atrazine (ppb)	2015	3	3	ND	NA	0.28 ¹	NA ¹	No	Runoff from herbicide used on row crops
Barium (ppm)	2016	2	2	0.0474	NA	0.0354	NA	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chloramines (ppm)	2016	[4]	[4]	1.73	0.54–3.95	3.12	2.57-3.85	No	Water additive used to control microbes
Combined Radium (pCi/L)	2016	5	0	1.5	NA	NA	NA	No	Erosion of natural deposits
Fluoride (ppm)	2014	4	4	0.72	NA	0.61	0.49–0.89 ¹	No	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAAs] (ppb)	2016	60	NA	44 ²	14.7–44.8	58.6	NA	No	By-product of drinking water disinfection
Nitrate (ppm)	2016	10	10	0.64	NA	0.068	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Simazine (ppb)	2016	4	4	NA	NA	0.08	NA	No	Herbicide runoff
TTHMs [Total Trihalomethanes] (ppb)	2016	80	NA	49.3 ³	26.6–58	59	NA	No	By-product of drinking water disinfection
Total Organic Carbon (ppm)	2016	TT	NA	NA	NA	6.44	3.93-6.44	No	Naturally present in the environment
Turbidity ⁴ (NTU)	2016	TT	NA	NA	NA	0.2	0.1-0.2	No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)	2016	TT = 95% of samples meet the limit	NA	NA	NA	100	NA	No	Soil runoff

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2016	1.3	1.3	0.73	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2016	15	0	2.6	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES

					Harris County WCID #1		Baytown Area Water Authority		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Iron (ppb)	2016	300	NA	23	NA	NA	NA	No	Leaching from natural deposits; Industrial wastes
Manganese (ppb)	2016	50	NA	18.6	NA	18.7	NA	No	Leaching from natural deposits
Sulfate (ppm)	2014	300	NA	2	NA	23 ¹	NA ¹	No	Runoff/leaching from natural deposits; Industrial wastes
Total Dissolved Solids [TDS] (ppm)	2014	1,000	NA	262	NA	187 ¹	NA ¹	No	Runoff/leaching from natural deposits
Zinc (ppm)	2016	5	NA	ND	NA	0.0245	NA	No	Runoff/leaching from natural deposits; Industrial wastes

UNREGULATED SUBSTANCES ⁵

SI (L

S

	Harris Cou	inty WCID #1	Baytown A Autho	rea Water ority		
JBSTANCE INIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
romodichloromethane (ppb)	2016	15.2	1.8–15.2	16.6	NA	By-product of drinking water disinfection
romoform (ppb)	2016	3.6	ND-3.6	NA	NA	By-product of drinking water disinfection
Chloroform (ppb)	2016	39.2	ND-39.2	43.1	NA	By-product of drinking water disinfection
Dibromochloromethane (ppb)	2016	6.5	1.7–6.5	3.3	NA	By-product of drinking water disinfection
odium (ppm)	2016	91.9	NA	24.8	NA	Erosion of natural deposits

UNREGULATED CONTAMINANT MONITORING RULE - PART 3 (UCMR3)⁵

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH
Chromium-6 (ppb)	2013	0.17	ND-0.17
Molybdenum (ppb)	2013	3.93	3.1-3.93
Strontium (ppb)	2013	333	70–333
Vanadium (ppb)	2013	0.79	ND-0.79

¹Sampled in 2016.

²LRAA for 1st Qtr. 2016, DBP2-01.

³LRAA for 3rd Qtr. 2016, DBP2-02.

⁴Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

⁵ Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and

whether future regulation is warranted.

Definitions

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Constituent Level): SCLs are established to regulate the aesthetics of drinking water like appearance, taste and odor.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.