

This report was prepared by: Harris County WCID #1 125 San Jacinto Highlands, TX 77562 Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (281) 426-2115.

Meeting the Challenge

We are once again proud to present our annual water quality report, covering all testing performed between January 1 and December 31, 2011. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please visit our Web site www.hcwcid1.com. We now accept credit and debit cards.

Request for confidentiality: Customers may request confidentially of their utility account upon payment of a one-time fee of \$5.00. (Texas Utility Code §182.052 and §182.053)

Please share with us your thoughts or concerns about the information in this report. After all, well-informed customers are our best allies.

For more information about this report or any questions relating to your drinking water, please call Mark Taylor, Harris County WCID #1, General Manager, at (281) 426-2115.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet Tuesday following the second Monday of each month, beginning at 6 p.m., at the Water Office, 125 San Jacinto, Highlands, Texas.

Where Do We Get Our Drinking Water?

The source of drinking water for Harris County WCID #1 is purchased surface water blended with 20 percent ground water from the Chicot Aquifer. Our main well site is located on E Houston Street in Highlands Texas. Purchased water comes from the Trinity River and is processed by Baytown Area Water Authority on Thompson Road.

A Source Water Susceptibility Assessment for your drinking water sources is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. Some of this source water assessment information is available on Texas Drinking Water Watch at http://dww.tceq.state.state.tx.us/DWW. For more information on source water assessments and protection efforts at our system, please contact us.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include: Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems; Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa. gov/safewater/lead.

Source Water Assessment

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=.

Further details about sources and source water assessments are available on Drinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW/.

Information on the Internet

The U.S. EPA Office of Water (www.epa.gov/watrhome) and the Centers for Disease Control and Prevention (www.cdc.gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation and public health.

Sampling Results

During the past year, we have taken numerous water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were determined to the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state allows us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Monthly testing found no Total Coliform Bacteria or Fecal Coliform Bacteria.

				Harris Coun	ty WCID #1	Baytown Area Water Authority			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Atrazine (ppb)	2009	3	3	0.1	NA	0.381	NA¹	No	Runoff from herbicide used on row crops
Barium (ppm)	2011	2	2	0.0480	NA	0.057^{2}	NA ²	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beta/Photon Emitters ³ (pCi/L)	2010	50	0	4	NA	5.64	NA ⁴	No	Decay of natural and man-made deposits
Chloramines (ppm)	2011	[4]	[4]	2.185	0.5-3.65	3.26	2.60-3.73	No	Water additive used to control microbes
Fluoride (ppm)	2011	4	4	0.78	NA	0.7	0.05–1.03	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAA] (ppb)	2011	60	NA	17.2	3.8–17.2	17.8	17.8–17.8	No	By-product of drinking water disinfection
Nitrate (ppm)	2011	10	10	0.14	NA	0.25	NA	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Simazine (ppb)	2009	4	4	0.07	NA	0.131	NA¹	No	Herbicide runoff
TTHMs [Total Trihalomethanes] (ppb)	2011	80	NA	26.1	15.3–26.1	30.1	30.1–30.1	No	By-product of drinking water disinfection
Total Organic Carbon (ppm)	2011	ТТ	NA	NA	NA	4.72	3.86–7.41	No	Naturally present in the environment
Turbidity ⁶ (NTU)	2011	TT	NA	NA	NA	0.48	NA	No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)	2011	TT=95%<0.3 NTU	NA	NA	NA	99.45	NA	No	Soil runoff

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2010	1.3	1.3	0.562	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2010	15	0	2.45	0/20	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES										
				Harris County	WCID #1	Baytown Area Water Authority				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Chloride (ppm)	2011	250	NA	29	NA	45	NA	No	Runoff/leaching from natural deposits	
Iron (ppb)	2011	300	NA	23	NA	NA	NA	No	Leaching from natural deposits; Industrial wastes	
Manganese (ppb)	2011	50	NA	19	NA	50	NA	No	Leaching from natural deposits	
pH (Units)	2011	6.5–8.5	NA	8.2	NA	7.54	NA	No	Naturally occurring	
Sulfate (ppm)	2011	250	NA	2	NA	45	NA	No	Runoff/leaching from natural deposits; Industrial wastes	
Total Dissolved Solids [TDS] (ppm)	2011	500	NA	274	NA	255	NA	No	Runoff/leaching from natural deposits	
Zinc (ppb)	2008	5000	NA	NA	NA	131	NA	No	Runoff/leaching from natural deposits; Industrial wastes	
UNREGULATED SUBSTANCES ⁷										

UNREGULATED SUBSTANC	
	- '
OINCIDENTED SOBSITIVE	LJ

		Harris County WCID #1		Baytown Area Water Authority		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Bromodichloromethane (ppb)	2011	9.7	3.8–9.7	11.5	11.5–11.5	By-product of drinking water chlorination
Bromoform (ppb)	2011	3.1	1.5–3.1	NA	NA	By-product of drinking water chlorination
Chloroform (ppb)	2011	9.1	2.0-9.1	10.3	10.3-10.3	By-product of drinking water chlorination
Dibromochloromethane (ppb)	2011	6.4	5.8–6.4	6.4	6.4–6.4	By-product of drinking water chlorination
Sodium (ppm)	2011	97.2	NA	34.7	NA	Erosion of natural deposits

INITIAL DISTRIBUTION SYSTEM EVALUATION (IDSE) 8

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Haloacetic Acids [HAA]-IDSE Results (ppb)	2008	25.1	11.4–39.3	By-product of drinking water disinfection
TTHMs [Total Trihalomethanes]-IDSE Results (ppb)	2008	32.3	24-40.8	By-product of drinking water disinfection

¹Sampled in 2010.

² Sampled in 2008.

³The MCL for beta particles is 4 mrem/year. The U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.

⁴Sampled in 2009.

⁵ Average disinfection level for the year.

⁶Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

⁷Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

We were required by the U.S. EPA to conduct an evaluation of our distribution system. This is known as an Initial Distribution System Evaluation (IDSE) and is intended to identify locations in our distribution system that have elevated disinfection by-product concentrations. Disinfection by-products (e.g., HAAs and TTHMs) result from continuous disinfection of drinking water and form when disinfectants combine with organic matter that naturally occurs in the source water.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

NTU (**Nephelometric Turbidity Units**): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.